Antimicrobial resistance to ceftazidime involving loss of penicillin-binding protein 3 in Burkholderia pseudomallei.

نویسندگان

  • Narisara Chantratita
  • Drew A Rholl
  • Bernice Sim
  • Vanaporn Wuthiekanun
  • Direk Limmathurotsakul
  • Premjit Amornchai
  • Aunchalee Thanwisai
  • Hui Hoon Chua
  • Wen Fong Ooi
  • Matthew T G Holden
  • Nicholas P Day
  • Patrick Tan
  • Herbert P Schweizer
  • Sharon J Peacock
چکیده

Known mechanisms of resistance to β-lactam antibiotics include β-lactamase expression, altered drug target, decreased bacterial permeability, and increased drug efflux. Here, we describe a unique mechanism of β-lactam resistance in the biothreat organism Burkholderia pseudomallei (the cause of melioidosis), associated with treatment failure during prolonged ceftazidime therapy of natural infection. Detailed comparisons of the initial ceftazidime-susceptible infecting isolate and subsequent ceftazidime-resistant variants from six patients led us to identify a common, large-scale genomic loss involving a minimum of 49 genes in all six resistant strains. Mutational analysis of wild-type B. pseudomallei demonstrated that ceftazidime resistance was due to deletion of a gene encoding a penicillin-binding protein 3 (BPSS1219) present within the region of genomic loss. The clinical ceftazidime-resistant variants failed to grow using commonly used laboratory culture media, including commercial blood cultures, rendering the variants almost undetectable in the diagnostic laboratory. Melioidosis is notoriously difficult to cure and clinical treatment failure is common in patients treated with ceftazidime, the drug of first choice across most of Southeast Asia where the majority of cases are reported. The mechanism described here represents an explanation for ceftazidime treatment failure, and may be a frequent but undetected resistance event.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Membrane-Bound PenA β-Lactamase of Burkholderia pseudomallei.

Burkholderia pseudomallei is the etiologic agent of melioidosis, a difficult-to-treat disease with diverse clinical manifestations. β-Lactam antibiotics such as ceftazidime are crucial to the success of melioidosis therapy. Ceftazidime-resistant clinical isolates have been described, and the most common mechanism is point mutations affecting expression or critical amino acid residues of the chr...

متن کامل

Burkholderia pseudomallei class a beta-lactamase mutations that confer selective resistance against ceftazidime or clavulanic acid inhibition.

Burkholderia pseudomallei, the causative agent of melioidosis, is inherently resistant to a variety of antibiotics including aminoglycosides, macrolides, polymyxins, and beta-lactam antibiotics. Despite resistance to many beta-lactams, ceftazidime and beta-lactamase inhibitor-beta-lactam combinations are commonly used for treatment of melioidosis. Here, we examine the enzyme kinetics of beta-la...

متن کامل

Rapid Burkholderia pseudomallei identification and antibiotic resistance determination by bacteriophage amplification and MALDI-TOF MS

Phage amplification detected by MALDI-TOF MS was investigated for rapid and simultaneous Burkholderia pseudomallei identification and ceftazidime resistance determination. B. pseudomallei ceftazidime susceptible and resistant ΔpurM mutant strains Bp82 and Bp82.3 were infected with broadly targeting B. pseudomallei phage ϕX216 and production of the m/z 37.6 kDa phage capsid protein observed by M...

متن کامل

Antimicrobial Susceptibility and Genetic Characterisation of Burkholderia pseudomallei Isolated from Malaysian Patients

Burkholderia pseudomallei, the causative agent of melioidosis, is intrinsically resistant to many antibiotics. Ceftazidime (CAZ), the synthetic β-lactam, is normally used as the first-line antibiotic therapy for treatment of melioidosis. However, acquired CAZ resistance can develop in vivo during treatment with CAZ, leading to mortality if therapy is not switched to a different antibiotic(s) in...

متن کامل

Antimicrobial activity of Tachyplesin 1 against Burkholderia pseudomallei: an in vitro and in silico approach

Burkholderia pseudomallei, the causative agent of melioidosis, is intrinsically resistant to many conventional antibiotics. Therefore, alternative antimicrobial agents such as antimicrobial peptides (AMPs) are extensively studied to combat this issue. Our study aims to identify and understand the mode of action of the potential AMP(s) that are effective against B. pseudomallei in both planktoni...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 108 41  شماره 

صفحات  -

تاریخ انتشار 2011